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ARTICLE INFO ABSTRACT

While high-efficiency propulsion techniques are enabling new mission concepts in deep space exploration, their
limited thrust capabilities necessitate long thrusting arcs and make spacecraft more susceptible to missed thrust
events. To correct for such mishaps, most spacecraft require updated trajectories that are relayed from Earth.
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y lsseth ¢ I;u“ events measured in hours, a delay in transmission may prolong the time of flight or result in a complete loss of mission.
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Such problems can be alleviated by increasing the spacecraft's onboard autonomy in guidance. This paper de-
monstrates how a computationally lightweight neural network can map the spacecraft's state to a near-optimal
control action, autonomously guiding a spacecraft within different astrodynamic regimes and optimality criteria.
The neural network is trained using supervised learning and datasets comprised of optimal state-action pairs, as
determined through traditional direct and indirect methods. Additionally, the neural network-designed solutions
retain optimality and time of flight corresponding to traditional trajectories. Finally, the same neural networks
can autonomously correct for most missed thrust events encountered on long-duration low-thrust trajectories.
The presented results provide a path for mitigating risks associated with the use of high-efficiency low-thrust

propulsion techniques.

1. Introduction

High-efficiency propulsion systems are enabling new deep space
science missions. These systems are being incorporated across a wide
spectrum of NASA missions, from small and low-cost missions like the
LunaH-Map [1] and the Psyche spacecraft [2], to flagship missions like
Mars Sample Return (MSR) [3,4]. However, the propulsion systems
come with certain challenges; chief among them is their limited thrust.
Preliminary trajectory design strategies, originally developed for high-
thrust engines, make the assumption that the thrust is applied in-
stantaneously. Removing this assumption has several consequences,
and a significant amount of work over the past two decades has gone
into developing new trajectory design tools for low-thrust propulsion
capabilities. One consequence of removing the instantaneous thrust
assumption is that, during the thrusting period, a software glitch or an
external factor, such as a micro-meteoroid impact [5], may cause the
spacecraft to enter safe mode and prematurely cease the thrust stage. An
unexpected missed thrust event (MTE) can potentially occur over the
thrusting phase and may have severe consequences if the spacecraft has

a time-dependent trajectory, e.g., a scheduled planetary flyby. Cur-
rently, there exists no general solution to designing low-thrust trajec-
tories that are resilient to such MTEs.

The effects of MTEs are mission dependent. Recent low-thrust he-
liophysics mission studies often use solar sails as their primary source of
propulsion [6,7], where a 10 day MTE (simulating an active trim
maneuver failure) may result in a delay of over 200 days [8]. Moreover,
planetary science missions that rely on gravity assists or precise ren-
dezvous can be lost entirely if the spacecraft is unable to reach its target
after a MTE [8]. The lack of trajectories resilient to MTEs impacts all
areas of space science and exploration.

There are several sub-optimal techniques for dealing with MTEs.
The simplest approach may temporarily disable the automated fault
response systems [9]. While this approach does remove the risk of a
missed thrust event, it increases the spacecraft's susceptibility to other
risks as the conditions that would trigger a safe mode are often dan-
gerous. A second approach is to artificially limit the spacecraft's
thrusters to some fraction of their full potential, called the duty cycle.
These artificial limits can then be removed in flight to compensate for
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MTEs. The duty cycle approach is an attractive option because it is
already widely used to simulate the time spent on planned thrust
stoppages like communication, and tracking [10]. However, it is by
definition sub-optimal. A third approach is to determine where in a
trajectory the spacecraft is most susceptible to a MTE, place a forced
coasting arc at that time, and then re-optimize the trajectory. This
process is repeated until the trajectory is resilient to MTEs shorter than
a pre-specified amount [11]. The downside of this approach is, that it
does not take into account the likelihood of multiple MTEs on a single
trajectory. Building on the idea of a forced coast period is the idea of a
rolling coast [12], where a forced coast is placed at some time ahead
along the trajectory. If there is no MTE, then as the spacecraft ap-
proaches the forced coast, the forced coast is moved to a later state
along the trajectory, and the trajectory is re-optimized. This process of
moving the forced coast and re-optimizing the trajectory has to be
performed continuously throughout the mission, which requires con-
stant communication with mission designers and a large amount of
ground-based computational resources.

The most modern approach to dealing with MTEs is to include ad-
ditional fuel and time margins. In such an instance, a spacecraft may
exhaust these propellant reserves in an attempt to compensate for the
MTE [13]. The determination of these margins is extremely mission-
specific and computationally expensive [14]. Compounding the ex-
pense of this approach is after the MTE, the new trajectory still needs to
be designed on Earth. Spacecraft-based hardware often lags a decade
behind ground-based technology in computing power [15] and, at the
time of a MTE, onboard hardware may not be capable of recomputing
new optimal trajectories in real-time. This limits spacecraft autonomy
and control, one of NASA's research priorities [16,17] for deep space
exploration, where one-way communication time is often measured in
hours.

One approach to solving the problems inherent to deep space au-
tonomy is to incorporate artificial intelligence in the trajectory design
process. Artificial intelligence techniques capable of interacting with
the environment, such as evolutionary neurocontrol [18] and re-
inforcement learning [19,20], have delivered promising results [21].
Additionally, traditional forms of supervised learning have been ap-
plied to real-time optimal trajectory design for low-thrust spacecraft in
the two-body problem [22] as well as in landing problems [15,23]. One
particularly interesting approach solves the optimal control problem
using an indirect method and then trains a neural network to correct the
co-states as the spacecraft deviates from a nominal trajectory [24,25].
Most mass/time optimal trajectories have a bang-bang control scheme
where the controls are discontinuous, while the co-states are smooth.
Due to this smoothness, neural networks better approximate the co-
states than the controls. Once the neural network generates the new co-
states, the controls can be calculated directly. Unfortunately, this ap-
proach introduces new problems and difficulties. Foremost, the re-
lationship mapping the co-states to the controls is dependent on both
the cost function being optimized, as well as the dynamics of the system
[26]. This makes the mapping highly nonlinear, so a small error in the
predicted co-states can be magnified. The second problem introduced
with this approach is the complexity of generating the training dataset.
To generate the co-states, an indirect method is required, which suffers
from very small radii of convergence for mass/time-optimal trajec-
tories, difficulties with including path constraints, and difficulties with
complex boundary constraints. These limitations with using indirect
methods for optimal control have led many astrodynamicists to use
direct methods instead [27], which do not produce the co-states re-
quired for the above approach.

One commonality of the above artificial intelligence approaches, is
that none have explored the application of neural networks to the
missed thrust problem. By applying autonomous optimal control to the
missed thrust problem, spacecraft can repair their trajectories after a
missed thrust event. This is one key element of making spacecraft safe
mode tolerant and increasing deep space autonomy. This paper
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demonstrates that a computationally lightweight neural network, that
maps states directly to controls, can be employed to successfully guide a
spacecraft using a low-thrust propulsion system through three distinct
optimal control problems. Through directly mapping the states to
controls, this paper allows the use of both direct and indirect optimal
control methods for the creation of the neural network. Additionally,
when MTEs are introduced, a neural network-based controller is highly
effective for autonomously correcting a majority of these events in all
three problems.

2. Optimal control problems

The three different optimal control problems (OCP) this work in-
vestigates are:

1. Two-Body Orbit-to-Orbit Low-Thrust Transfer,
2. Two-Body Interplanetary Low-Thrust Transfer, and
3. Circular Restricted Three-Body Problem Low-Trust Transfers.

These problems span a wide range of boundary conditions and
highlight the generalizability of using neural networks for optimal
control in the field of astrodynamics.

2.1. Two-body orbit-to-orbit transfer

The two-body orbital transfer OCP is formulated as a transfer be-
tween two circular planar orbits centered about the Sun. The spacecraft
is equipped with a low-thrust propulsion system, and the equations of
motion, in polar form, governing the path of the spacecraft can be ex-
pressed as,

2
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where r is the distance from the sun, 0 is the counter-clockwise angle
relative to the inertial x-axis, m is the mass of the spacecraft, v, is the
tangential velocity, c; is the spacecraft's max thrust, c, is its specific
impulse, GM is the solar gravitational constant, u is the spacecraft's
thrust action bounded between 0 and 1, and f} is the in-plane control
angle as shown in Fig. 1.

Values for the constants associated with Equations (1)-(4) can be
found in Table 1, and are chosen to represent a possible architecture for
the Earth Return Orbiter in the Mars Sample Return (MSR) mission [3].

For improved simulation performance, non-dimensionalization of
the system can be performed by using several characteristic constants.
The characteristic mass, m*, is defined as the spacecraft's initial mass.
The characteristic length, I*, is equal to the Sun-Earth distance. The
characteristic time, t*, is defined to set the non-dimensional gravita-
tional constant equal to 1 and can be calculated using Equation (5).

1*3

! =\/ ®)

The OCP being solved is the design of a trajectory that minimizes
the quadratic thrust action, given as a cost function in Equation (6). For
preliminary investigation, the trajectory is designed to take the space-
craft from a circular orbit with the semi-major axis of Mars to a circular
orbit with the semi-major axis of Earth.

t
J= ‘/t;f u(t)2de

GM

(6)
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Fig. 1. Problem Setup:Left: Earth and Mars orbit with a representative trajectory right: Spacecraft enlarged to show thrust and control angle.

Table 1

Spacecraft and system parameters.
c1 (N) ¢ (s) GM (km3/s%) TOF (Year)
1.33 3872 1.3ell 1.1

This OCP is solved using an indirect method, which converts the
minimization problem into a two-point boundary value problem
(TPBVP) with the following Hamiltonian:

H = NF + A0 + LiF + AygVg + Apiit + 12, 7)

where 1; is the i co-state. The optimal controller can be determined by
differentiating the Hamiltonian with respect to the control variables as
shown in Equations (8) and (9).

o =0 , fB= atan(ﬁ]
oB Avg (8)
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ou [ m
(C)]
The differential equations defining the co-states (/ii = —Ba—f) are
given in Equations (10)-(14).
i _2MCM A8 Avglve
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which result in a TPBVP with the following boundary conditions at
t = 0: 1y, By, oy, Voo, My and Tigs /lgtf, Tigs Vo 11 Amtf att = t;. The TPBVP is
solved using a direct shooting method, and derivatives are calculated
using a finite difference method. Chapter 3 of Sood [28], has a good
introduction to direct single and multiple shooting methods. A sample
optimal orbit-to-orbit trajectory is shown in Fig. 2. The time of flight
(TOF) for this trajectory is 1.1-years.
The thrust curve that produces this trajectory is shown in Fig. 3.

m

2.2. Two-body Mars-To-Earth transfer

While the boundary conditions of two-body orbit-to-orbit transfers
cover a wide class of trajectories, another large class of transfers require
the arrival at a specific point along the orbit at a precise time. The
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Fig. 2. Sample 1.1-Year orbit-to-orbit quadratic thrust optimal transfer trajec-
tory.

boundary conditions are exemplified by interplanetary rendezvous
trajectories, and are investigated in this section. The dynamical foun-
dations for the OCP are similar to the orbit-to-orbit transfer, Equations
(1)-(4), but with different boundary conditions and cost function. In-
stead of targeting an orbit, a moving point is being targeted whose
location in polar coordinates can be specified as

— . .
Xtarget = [aEartha (eEarth X t) + 903 0, 6Earth X aEarth]- (15)

As such, Equation (15) corresponds to the final state of an inter-
planetary trajectory from Mars-To-Earth with a fixed time of flight.
Additionally, the cost function being optimized is

L
J= fmf u(t)dt, 16)
which corresponds to a mass optimal trajectory. The final difference
between this problem setup and the orbit-to-orbit transfer is the ap-
plication of a direct method to solve the optimal control problem;
meaning no co-state equations are needed. In order to place the OCP
into the form of a nonlinear programming problem, the trajectory is
discretized into 20, evenly spaced in time, nodes. At each node, a
Hermite-Simpson collocation method is used to generate the defects in
the dynamics, and a path constraint is introduced to ensure the thrust is
bounded between 0 and 1. The initial and final states are formed as
boundary conditions. Once properly discretized, the nonlinear pro-
gramming problem is solved using MatLab's fmincon function, using
sequential quadratic programming, and an optimality tolerance of 1e-4.
This optimality tolerance is chosen as it provided a good trade-off
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Fig. 3. Thrust curve.

between performance, and speed. Kelly [29] provides an excellent first
introduction to direct collocation, and Topputo, and Zhang [30] is a
good intermediate level reference for direct transcription methods.

2.3. Circular restricted three-body injection onto a Lyapunov Orbit

The final OCP is carried out within the framework of the Earth-
Moon circular restricted three-body problem (CR3BP). The spacecraft
mass is assumed to be negligible when compared to the mass of the
Earth and the Moon, which are in turn assumed to move in circular
orbits around their mutual barycenter. The following characteristic
quantities are defined to non-dimensionalize the system:

F=n+n a7)
m* =m + m, (18)
3
e
Gm* (19)

where G is the universal gravitational constant. In the non-dimensional
system, the period of the system is 2x, and the distance between the
Earth and the Moon is now unity [31].

By converting the inertial reference frame to a rotating reference
frame and further constraining the dynamical system to the x-y plane, a
pseudo-potential function, Q, can be expressed as

1—u u 1
Q= + =4+ (2 +)?
g Tyt 20)
where 1 is the non-dimensional mass ratio and
e+ u?+y? (21)
= o —1+p?+y%. (22)
Spatial derivatives of the pseudo potential are expressed as
oQ ’Q
ox o T (23)

As a result, the equations of motion can be re-written in a compact
form as

)

c
2y + Q, + l—*—usm(ﬁ)

(24)

t*z C1
—2% + Q, + ——ucos(B)
* nms (25)
2
where % non-dimensionalizes the thrust, ¢; is the maximum thrust of

the spacecraft, ms; is the mass of the spacecraft, u is the thrust action
bounded between [0,1], and 3 is the direction of thrust, defined in

B

A \

Fig. 4. Generic setup of the CR3BP in the rotating reference frame.

Table 2

System and spacecraft parameters.
u I* (km) t* (s) c1 (N) ms (kg)
0.01215 384400 375190 10 44,000

Fig. 4. For this investigation, values for the characteristic quantities and
spacecraft parameters can be found in Table 2. The parameters are
chosen to represent an Earth-Moon system, and a payload capable of
being launched by a Falcon 9 Heavy [32] powered by 2 X 3 Xenon
thrusters [33].

This model does not include rotational inertia, which means the
spacecraft can instantaneously pitch in any direction in the plane of
motion, and makes 3 a control input. Additionally, mass change is
neglected in this problem, as the nominal time of flight for this optimal
control problem is 2 non-dimensional time units, which corresponds to
about 8.7 days. If the spacecraft were to apply max thrust continuously
for the entirety of the trajectory, it would use up only 1% of the
spacecraft's mass, and, as will be shown later in Fig. 11, the spacecraft
only uses 1/20th of its max thrust. The cost function is

_ (Y 2.
]_'/0' ciulde.

The quadratic nature of this cost function makes it easier for the
optimal trajectory to converge. Alternatively, the function could be
changed to a mass-optimal cost function using a homotopy similar to
the one used in Sanchez et al. [15].

Using Pontryagin's minimization principal [26], the following Ha-
miltonian can be obtained

(26)
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*2
-2 + Q, + t—*ﬂcos(ﬁ) + clu.
l ms (27)
Similar to the two-body orbit-to-orbit transfer, the optimal con-

troller can be determined by differentiating the Hamiltonian with re-
spect to the control variables as shown below.

aa_); —0 P amn(%) (28)
2
5;; =0, u= —Z—:;—Z(/lxsin(ﬁ) + A;c08(B)). 9
The differential equation defining the co-states (/i,- = —%/) gives the
following relationships:
Ae = =250 — 15Qy (30)
Ay = =2:Q — 2;Qy (31)
e ==y + 24 (32)
Ay = =2y = 2, (33)

which result in a two point boundary value problem (2PBVP) with the
following boundary conditions at t = 0 X, ¥, Xo, ¥, and Xigs Vi Xeg, ylf
att = t; with ' '

A (X(ty)) = 0. &)

A direct single shooting method is then used to solve the 2PBVP and
derivatives are calculated through a first order finite difference method.

In this paper the targeted state, listed in Table 3, corresponds to a
state on a Lyapunov orbit around the L, Lagrange point in the Earth-
Moon system. This particular state is chosen because periodic orbits
around Lagrange points are often a desired destination for spacecraft
like the Wilkinson Microwave Anisotropy Probe [34] and the James
Webb Space Telescope which has a planned orbit around the Sun-Earth
L, Lagrange point [35].

3. Methods
3.1. Modeling missed thrust events

When spacecraft are outside expected operating conditions, they
may autonomously retreat into a protective operational mode called
safe mode. While in safe mode, the spacecraft shuts down all non-es-
sential components, like propulsion and payload, to conserve its power,
establish communications with Earth, become thermally safe, and en-
sure its survival. These safe mode events are unpredictable, and can be
triggered by any number of scenarios, from software glitches to mi-
crometeorite impacts [5]. If a safe mode event occurs while the
spacecraft is thrusting, the engine prematurely shuts off, thus starting a
missed thrust event (MTE). With high-thrust engines, where thrust arc
durations are measured in seconds to minutes, the likelihood of a safe
mode event overlapping with a thrust arc are minuscule and can safely
be ignored in the initial design phase [8] or automated safe mode re-
sponses can be turned off during the brief thrusting period [9]. In
contrast, spacecraft using low-thrust propulsion may have thrust arcs

Table 3

Target state.
x (ND) y (ND) X (ND) y (ND)
0.82847 0 0 0.07558
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Table 4
Weibull Parameters for Safe Mode Events from Imken et al. [10].
Scale (A) Shape (k)
Time between MTEs (days) 230.5 0.87
Duration of MTE (days) 2.41 1.17

that are months to years long. In such cases, the overlap between a
thrust arc and a safe mode event is not only likely, but nearly certain for
long duration transfers [10].

The occurrence and duration of safe mode events are inherently
random, but, by drawing on a database of deep space missions, Imken
et al. (2018) determined the probability distributions of both the start
of a safe mode event as well as its duration [10]. Both conform to two
different Weibull distributions whose parameters can be found in
Table 4. These two parameters, A and k, adjust the scale and shape of
the Weibull distribution respectively. The shape parameter determines
the rate of change of the instantaneous likelihood. A value of less than
one indicates that the instantaneous failure rate decreases with an in-
crease in the duration of the trajectory. Conversely, a shape value
greater than one indicates that the instantaneous failure rate increases
over a particular trajectory. If the shape is held constant, increasing the
scale parameter increases the distribution's mean and standard devia-
tion. Hence, as the time since the last MTE increases, the likelihood of
another MTE decreases.

The probability density function for a Weibull distribution is shown
in Equation (35), where £ is one possible input, and f (&) gives the
probability of that input occurring.

k-1 K
o = In(3) e g0
0 £<o0 (35)

The process for simulating a trajectory with MTEs is detailed in
Algorithm 1. Here, an optimal trajectory is computed and simulated
until a MTE occurs. The start of the MTE is demarcated by mtegq,,, while
its duration is demarcated as mtegy, qion. After the MTE, and its corre-
sponding ballistic component, the optimal control problem is again
solved using the spacecraft's current state as the updated initial con-
ditions, IC. Additionally, at this step, the time and duration of the next
MTE is calculated. Both are evaluated by drawing a random number
from the appropriate Weibull distribution. If the start of the next MTE is
after the final time of the trajectory, t;, the system is only integrated
until the final time, satisfying that the end conditions are met.

Algorithm 1 Simulating MTEs

fullTrajectory = []
t=0
whilet < tydo
ifmtegqr < tthen
mtegar, Mtegyration= generateNewMTE ()
end if
if t + mtesare > ty then
Solve OCP with IC, no MTE = trajectoryLeg
Add trajectoryLeg to fullTrajectory
t=tr
end if
Solve OCP with IC & t = TrajectoryLeg
Add TrajectoryLeg to fullTrajectory
IC = TrajectoryLeg (t + mtegqrt)
t =t + mtegan
Ballistically propagate IC from t to t + mteqyrasion = TrajectoryLeg
IC = TrajectoryLeg (t + mtequration)
t =t + mtequration
Add TrajectoryLeg to fullTrajectory
end while
return fullTrajectory
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Fig. 5. Simulation displaying the likelihood of multiple MTEs over a 1.1-Year thrusting arc.

Algorithm 1 allows multiple MTEs to be simulated for each trajec-
tory. By running 1,000,000 Monte Carlo simulations, it is apparent that
for a low-thrust spacecraft on a 1.1-year-long trajectory, where the
spacecraft thrusts continuously, one MTE is the nominal case and
having a trajectory with no MTEs would be anomalous, as shown in
Fig. 5. Additionally, for trajectories with the same 1.1-year time of
flight and continuous thrust, it is evident that the spacecraft is more
likely to have two MTEs than no MTEs.

Cumulatively, while trajectories with either zero or one MTE make
up a large amount of trajectories encountered, the likelihood of two or
more MTEs make up the majority of scenarios. For trajectories longer
than a year, any technique for mitigating MTEs must be able to deal
with multiple MTEs per trajectory. Using a similar Monte Carlo ap-
proach, it is determined that trajectories with thrust arcs longer than
0.68 years and 1.3 years have one and two expected MTEs, respectively.

Note, that under the continuous thrust assumption, the expected
number of MTEs encountered in a trajectory is purely a function of the
time of flight and is independent of the trajectory itself. A 1.1-year
Mars-To-Earth transfer trajectory will have the same expected number
of MTEs as a 1.1-year Earth-To Moon transfer trajectory or the first 1.1-
year segment of an Earth-To-Jupiter transfer trajectory. Additionally,
all calculations in this section assume that the spacecraft is thrusting
over the entire trajectory. This assumption holds for trajectories that
minimize quadratic thrust, but often falls apart for mass optimal tra-
jectories where the controller more closely resembles a bang-bang
controller. Moving from ideal trajectories to actual mission designs the
constant thrust assumption still holds in certain cases. In one reference
design for the Earth Return Orbiter, the outbound Earth-To-Mars ren-
dezvous trajectory thrusts for approximately 85% of the trajectory [4].
Conversely, on the Mars-To-Earth return trajectory, the spacecraft is on
a flyby trajectory, resulting in a thrust fraction of approximately 70%
[4]. Another low thrust fraction case is the Bepi-Colombo mission,
which thrusts for less than half its total trajectory due to 11 gravity
assists [11]. The Dawn mission, on its trajectory from Vesta-To-Ceres,
thrusted for 93% of its trajectory until a MTE occurred 19 days before
arrival [9]. Additionally, Dawn's Ceres approach phase had a thrust
fraction of around 88% [9]. In summary, the constant thrust assump-
tion is well founded for low-thrust trajectories that rendezvous with the
target. This assumption degrades when the spacecraft has a flyby tra-
jectory or uses multiple gravity assists, which makes the constant thrust
assumption a conservative estimate. Finally, the constant thrust as-
sumption is solely used in the generation of Fig. 5. For the remainder of
this paper, the duration and timing of thrust arcs is determined by the
particular optimal control solver used in that scenario to better match
specific mission conditions.

3.2. Neural network design

Neural networks have been investigated by a number of researchers

with varying applications [36,37]. A neuron is generally a function that
has a single input, a configurable bias that offsets the input, and a single
output. These functions are usually simple and nonlinear, like the hy-
perbolic tangent function (Tanh). Tanh functions were some of the
earliest functions used in neural networks because, as illustrated in
Fig. 6, they are smooth and, despite having an infinite domain, have a
bounded range.

Rectified Linear Unit (ReLU) functions, shown in Fig. 7, are another
popular choice for neurons. They are governed by the following pie-
cewise equation and often provide better performance for neural net-
works during training [38].

0 ¢<0

Relu6) {§ 0<¢ (36)

As the name neural network implies, several neurons are linked
together such that the output of one set of neurons acts as the input to
the next set of neurons. Each set of neurons is called a layer. A scalar
gain, Kj;, is placed between each neuron output and neuron input. A
simple schematic for a two-layer neural network is shown in Fig. 8.

For simplicity, all neurons in this example are of the same function.
However, a general form with different functions may be selected. In
Fig. 8, there are 5 Tanh () neurons, connected by 6 different gains, Kj;.
As the system grows in layers and neurons, the complexity of the net-
work grows exponentially. The complex interaction of the nonlinear
functions allows the network to describe complex systems. In the lan-
guage of systems engineering, the network has emergence. The final
step in completing the neural network is to compute the individual
biases and gains, Kj;. This process begins by providing an input to the
neural network and comparing the network's output with the desired
output. The difference is used to update the biases and gains in the
network through a process known as backpropagation [38]. By pro-
viding enough input/output pairs, the neural network is expected to
learn the proper biases and gains.

All the neural networks used in this investigation have 5 layers (4
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Fig. 6. Tanh function with 0 bias.
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hidden, 1 output) with 32 neurons per hidden layer, for a total of 130
neurons, and 3394 trainable parameters. Larger models have already
been implemented on a VerTex-5QV FPGA co-processor onboard the
MARS 2020 mission [24]. The function types for the hidden layers in
this work are ReLUs, and Tanh functions are chosen for the output
layer, because, like the control variables, Tanh has a bounded range.
The neural networks are implemented using Keras with a TensorFlow
back end, and employ an Adam method optimizer [39]. The networks
are trained with a batch size of 40,000, and a patience of 50. A patience
of 50 indicates that the training process is terminated after the neural
network is unable to improve its performance over 50 consecutive
training iterations. These hyperparameters and network structure are
chosen based on empirical testing and used on all optimal control
problems in this paper. While the hyperparameters and network
structure are the same on all 3 problems, each network is re-trained
from a scratch using new initialization biases and gains for each pro-
blem.

3.3. Why deep neural networks work

Any optimal trajectory can be broken into a set of optimal states, X,
and the corresponding optimal actions, U*, taken at the state [26].
Conversely, if at every state, the corresponding optimal action is taken,
then an optimal trajectory will be formed. Thus, there exists a function
f () that maps each state to its corresponding optimal action as given by
Equation (37).

fF&X)=u" 37)
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Table 5
Upper and lower bounds for initial conditions in the two-body orbit-to-orbit
transfer optimal control problem.

ro (km) o (km/s) vg o (rad/s) mo (kg)
Upper 2.3933e8 1 25.3353 3366
Lower 2.2566€8 -1 24.0082 3366

Determining the function f() is only achievable in a few trivial
examples, and often can't be expressed in elementary functions.
Fortunately, neural networks are general purpose function approx-
imators. Previous work has shown that a neural network with an in-
finite number of neurons can, under some relatively benign conditions,
reproduce any function [40]. In this work, a finite number of neurons
are used to approximate f () over a range of conditions that a spacecraft
may encounter. Because the spacecraft's state after a missed thrust
event is likely to be in the area where the neural network is a close
approximation of f(), it can begin to create a near-optimal trajectory
for the spacecraft towards the desired target.

3.4. Dataset 1: Optimal trajectories

Before a neural network can be trained using supervised learning, a
dataset is needed. By varying the initial conditions, within the bounds
specified in Tables 5-7, and solving the corresponding optimal control
problem (OCP), a dataset of 150,000 trajectories is created for each
OCP. The bounds for the initial condition found in Table 7, are chosen
to represent a spacecraft perturbed off the stable manifold of the Lya-
punov orbit being targeted [28]. Each trajectory is discretized into 100
optimal state-action pairs, where a pair consists of the spacecraft's in-
stantaneous state and the corresponding control action. As a result, a
dataset of 15,000,000 optimal state-action pairs is generated.

The dataset is then post-processed by subtracting off that states
mean and dividing that states standard deviation. Finally, the dataset is
shuffled and divided into two sets. The first set contains 85% of the
state-action pairs and is used to train the neural network. Whereas, the
second contains the remaining 15% of the state-action pairs and is used
to validate the neural network. These post-processing steps are in-
troduced to the work-flow to improve neural network performance and
decrease over-fitting.

3.5. Dataset 2: Optimal trajectories with MTEs

One question that naturally arises from the preliminary work is, can
performance be boosted by including MTEs in the training dataset? The
neural network, as described in this paper, can only “learn” from the
datasets it has been trained on, and the optimal trajectories in dataset 1
only contains trajectories without MTEs. In order to test the potential
performance improvement, a new dataset of 150,000 optimal trajec-
tories is created in the two-body Orbit-To-Orbit transfer, and is called
dataset 2. Unlike the original dataset, dataset 2 has a single MTE,
randomly distributed in time, during each trajectory. After the MTE is
completed, the optimal control problem is re-solved, with the new post
MTE state. For example, a trajectory in dataset 2, has a 3 day MTE occur
125 days into the trajectory. After the MTE occurs, the trajectory is re-
optimized and the new state-action pairs are added to dataset 2. Dataset
2 is post-processed in the same way as the first dataset.

Table 6
Upper and lower bounds for initial conditions in the two-body Mars-to-Earth
transfer optimal control problem.

ro (km) o (km/s) Vg o (rad/s) mg (kg) TOF (Days)
Upper 2.2839¢8 0.01 24.3702 3366 405
Lower 2.2748e8 —-0.01 23.8876 3366 398
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Table 7
Upper and lower bounds for initial conditions in the circular restricted three
body transfer optimal control problem.

xo (km) Yo (km) Xo (km/s) Yo (km/s)
Upper 1.862e5 —7.3151e4 0.8406 0.4324
Lower 1.8605e5 —7.3459¢4 0.8379 0.4291

By combining trajectories from datasets 1 and 2, three new datasets,
each consisting of 150,000 trajectories are created. Each dataset has a
different fraction of trajectories with a MTE. The fraction of trajectories
with MTEs in these combined dataset varies between 1% and 50%. For
example, in the new 20% dataset, 120,000 trajectories are taken from
the dataset with no MTEs and combined with 35,000 trajectories taken
from the dataset with MTEs. Each new dataset is randomized and di-
vided into a training and validation set.

3.6. Neural network driven trajectories and performance metrics

Neural network driven trajectories (NNDT) are generated by in-
tegrating the system dynamics and allowing the neural network to
control the spacecraft through the integration process. The integration
is carried out using a Livermore solver [41], with a maximum error of
10712 and the states are stored at time steps which ensured 1000 sam-
ples per trajectory.

Three metrics are adopted to determine how well the neural net-
work is learning the optimal control solution. The first metric used to
evaluate the performance is the success rate. The trajectory is classified
as a success if the minimum miss distance (MMD) is within a certain
tolerance. The MMD is defined as the state closest to the target using the
2-norm. For the two-body orbit-to-orbit transfer, a MMD of less than 1%
the range of the difference between Mars' orbit and Earth's orbit is
considered to be a success. For the Mars-To-Earth optimal control
problem (OCP), the spacecraft's MMD is required to be within 1 Earth
sphere of influence (SOI) and for the V-inf to be less than 4.5 km/s,
representing the maximum allowable V-inf for re-entry in the MSR
mission profile [4]. Within the CR3BP, for insertion onto the Lyapunov
orbit, a MMD less than 2% of the range of the states is chosen to ensure
an arrival velocity difference of less than 1 m/s.

The next two metrics used to evaluate the NNDT are optimality error
and lateness. Optimality error, is computed as the percent difference
between the neural network's final cost function, (for successful tra-
jectories) and the final cost function from an optimal trajectory, J*, as
expressed in Equation (38).
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(38)

Lateness is computed by calculating the time difference between the
neural network's closest approach to the target verses the nominal 1.1-
year trajectory. In this metric, a negative result indicates that the NNDT
arrived at the target in less than 1.1-years.

4. Results
4.1. Baseline performance of the neural network

In each of the 3 optimal control problems (orbit-to-orbit, Mars-To-
Earth, CR3BP), 10,000 initial conditions are uniformly sampled from
the respective initialization areas, Tables 5-7, and propagated forward
in time using a neural network as a controller. All initial conditions
within the bounds would result in a failed trajectory if no control was
applied. However, with a neural network based controller, detailed
results in Table 8 show a baseline success rate of at least 97%. Ad-
ditionally, the average difference between the optimal final cost and the
neural network driven final cost is less than 3% in all cases. Promising
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Table 8
Baseline performance of the neural network.

Success % Optimality Error (SD) Lateness Days (SD)

Orbit-to-Orbit 99 1.01 (1) -1.4(1.7)
Mars-to-Earth 97 2.9 (2.4 -9.1(1.4)
CR3BP 98 1.4 (1.1) .85 (0.039)

results are found in the two-body orbit-to-orbit optimal control problem
(OCP). However, the results in the two-body Mars-To-Earth OCP are
more limited. The behavior can be explained by the more complex
boundary conditions and cost function in the Mars-To-Earth transfer.

An observation of the lateness parameter in Table 8 indicates that
the neural networks, on average, arrived earlier than the nominal TOF.
While their average early arrival is interesting, it should be noted that
even the average 9 day early arrival in the Mars-To-Earth trajectory is
only 2% of the total 1.1 year TOF. By plotting the thrust magnitude and
angle curves from the neural network driven trajectory against the
optimal trajectory in the CR3BP, deeper insights to the overall perfor-
mance of the neural network can be gained. Figs. 9 and 10 show both
sets of controls to be quite similar. The neural network curves are not as
smooth as the optimal solutions, and occasionally deviate from the
optimal solutions.

This tendency of the neural network driven trajectory (NNDT) to
closely mimic the optimal trajectory is found in the two-body orbital
transfer OCP as well. Qualitatively the neural network produces a
control that is similar to the optimal trajectory, but not as smooth. In
Fig. 11, the velocity difference between the neural network trajectory
and the optimal trajectory corresponds to the regions where the thrust
curves differ. This indicates that the differences in control inputs may
be due to the differences in the spacecraft's state. While the difference is
small, on the order of 107, it may be enough to cause the divergence in
control strategy.

The optimal thrust curve for the Mars-To-Earth trajectory is quali-
tatively different from the other two OCP because of the mass optimal
cost function. Shown in Fig. 12, the bang-bang structure is readily ap-
parent. Here, the thrust curve for the neural network driven trajectories
(NNDT) lags behind the optimal thrust curve. Additionally, the optimal
thrust curve ramps down towards the end, while the NNDT thrust curve
continues thrusting until arrival. This difference may, in part, be due to
differences in the spacecraft's state caused by the lagging control in the
initial portion of the trajectory.

4.2. Sensitivities of neural networks to MTE's

To evaluate the resiliency of the neural network to MTEs, 10,000
new NNDT are computed for each OCP. A single nominal initial con-
dition is chosen in each scenario which ensured any fluctuation in re-
sults are solely due to the stochasticity of MTEs. For both two-body
orbit-to-orbit and Mars-To-Earth OCPs, the initial conditions are set as
o = Qars, 89 = 0 (radians), 7y = 0, Voo = Vg pmars, With a mass of 3366 kg.
Each trajectory had a single MTE that is uniformly temporally dis-
tributed. This step allowed for evaluating the sensitivity of MTEs over
different portions of each trajectory.

By plotting the success rates of the neural network with a single
MTE, shown in Figs. 13-15, the sensitivity of the neural network to a
MTE along the trajectory is apparent. Two features are evident from
Fig. 13, which investigates sensitivity in the two-body orbit-to-orbit
transfer. First, the trajectories are more sensitive to a MTE in the be-
ginning of the transfer. As the MTE moves further from the initial state,
the trajectories slowly become less sensitive to the effects of a potential
MTE. Second, there is an increase in the sensitivity 3/4" of the way into
the trajectory (270 days), as evident by a slight decrease in the success
state rate.

Comparing Fig. 13 to the nominal thrust curve for the system, Fig. 3,
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the trajectories that can tolerate the longest MTEs, around 200 days
into the trajectory, correspond well to the region with the lowest thrust
fraction. As the nominal thrust fraction begins to increase after this
point, trajectories are more susceptible to long duration MTEs. This fits
well with the suggestion that as a spacecraft has more available thrust,
it is better able to compensate for MTEs.

One feature that is not readily apparent from Fig. 13 is the dis-
tribution of the duration of the MTEs. Because of the Weibull dis-
tribution, about 60% of MTEs would last 3 days or less, and about 90%
of MTEs are 8 days or less [10]. As a consequence, 60% of MTEs are
inside the bottom sixth of the figure, demarcated by a green horizontal
line, below which, all the trajectories are successful. Additionally, 90%
of the trajectories will be successful if they arrive at the 180 day mark
without a MTE. After approximately 320 days into the trajectory, the

neural network becomes much more resilient to MTEs. This behavior
can be attributed to the fact that the spacecraft is close enough to the
desired target that any deviation from a lack of maneuvering may not
be significant enough to keep the trajectory outside the arrival bounds.
If the arrival bounds are tightened, this region should correspondingly
shrink in size.

Repeating this procedure for the Mars-To-Earth orbit transfer, it can
be seen in Fig. 14 that different portions of the trajectory are now
sensitive. Because this OCP uses a mass optimal cost function, the
strategy is close to a bang-bang controller, see Fig. 12. The failure re-
gions are grouped in two large stalactites (red) that have a near overlap
with the thruster being turned on. Other large areas of success corre-
spond to when the thruster is off. Once again, the green line demarcates
a MTE duration of 3-days.
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Repeating this procedure within the Earth-Moon CR3BP, to insert a
spacecraft onto a Lyapunov orbit, allows for the exploration of sensi-
tivity on a much shorter time scale. In Fig. 15, sensitivity of a ~13 day
trajectory is displayed. MTEs with a duration longer than the remaining
time in the trajectory are discarded from the figure and the beginning of
a coast period is demarcated by a black line. Once again, the terminal
portion of the trajectory is much more resilient to MTEs than any MTE
in the earlier portions of the trajectory. It is apparent from Fig. 15 that
the spacecraft is much more susceptible to MTEs from 3 to 6 days after
the start of the trajectory than in any of the other regions. Here, within
the 3-6 days time, any single MTE with a duration of more than a day

would cause a failed trajectory.

Similarly to the Orbit-to-Orbit case, the length of the MTE that can
be tolerated in the CR3BP is inversely proportional to the thrust fraction
at that point. The nominal thrust curve for the CR3BP case, Fig. 9, has a
initial dip at the onset of the trajectory, which is closely mirrored in
Fig. 15, by a jump in the length of MTEs that the spacecraft can tolerate.

4.3. Neural network performance with multiple MTEs

Next, for each OCP, a second dataset consisting of 10,000 trajec-
tories is constructed. These datasets have multiple MTEs per trajectory,
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Table 9
Performance of the neural network with multiple MTEs.

Success % Optimality Error % (SD) Lateness Days (SD)

Orbit-to-Orbit 79 7.6 (7.3) 5.2 (6.1)
Mars-To-Earth 77 9.8 (8.9) —-14 (15)
CR3BP 76 5.2 (4.4) .78 (.12)

Table 10

Boosted networks on trajectories with No MTE.
Percentage of training dataset with MTE 0% 5% 20% 50%
Success Rate 99 99 98 95
Optimality Error 1.0 1.7 1.2 29

Table 11

Boosted network performance on trajectories with multiple MTEs.
Percentage MTE in dataset 0% 5% 20% 50%
Success Rate 79 77 77 77
Optimality Error (Average) 7.6 2.8 2.5 2.3
Optimality Error (SD) 7.3 2.6 1.2 1.6
Lateness (SD) 6.1 3.4 1.4 1.4

thus simulating likely scenarios during a long duration trajectory [10].
Results can be seen in Table 9, that indicate promising solutions. Here,
although the success rates decreased, the percent difference in optim-
ality and average lateness both increased. These changes are expected
because, the more MTEs that occur over a trajectory, the less average
control authority the spacecraft has, which results in both a lower
success rate and an overall less optimal trajectory.

4.4. Boosted neural network performance with MTEs: Orbit-to-orbit

For the two-body orbit-to-orbit OCP, incorporating trajectories with
MTEs into the training dataset has various effects on the performance of
the neural network. As the percentage of trajectories corrected after
MTEs within the training dataset is increased from 0% to 50%, listed in
Table 10, the success rate for trajectories with no MTEs falls from 99%
to 95%, while the difference in optimality increases.

The results become more interesting once the boosted neural net-
works are used on trajectories with multiple MTEs. As shown in
Table 11, while the success rate still decreases by 2%, the average
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optimality error dramatically improves. Additionally, the standard de-
viation for the optimality error and the lateness also tighten.

If the baseline success rates are acceptable, including re-optimized
trajectories in the training dataset may prove a valuable tool in im-
proving optimality error and lateness.

5. Conclusion and future work

This work investigates how relatively small deep neural networks
can be used as near-optimal controller over different astrodynamic re-
gimes, from simple two-body orbit transfers to the CR3BP with a low-
thrust spacecraft. Additionally, it is shown that these neural networks
can autonomously correct for a majority of missed thrust events, a
concern that hampers the widespread adoption of electric propulsion
methods. The performance of these neural networks is encouraging,
opens up new possibilities with respect to spacecraft autonomy, and
highlights the resiliency of neural network-based control to unexpected
events. Because the neural networks are recovering from a majority of
MTEs and designing new near-optimal trajectories, the results are
promising and suggest that the network is learning the local solution to
the Hamilton-Jacobi-Bellman equations underlying each optimal con-
trol problem. Although, this method can be used by ground teams to
rapidly recalculate spacecraft trajectories after MTEs, the method has
shown true potential when spacecraft are able to autonomously depart
safe mode. Similar to how recovery shepherding helps enable fault
tolerant computing by repairing the application after a fault occurs
[42], neural network optimal control delivers MTE tolerance to
spacecraft by repairing the trajectory after a MTE occurs. To further
build the methodology for autonomous spacecraft operation, future
work will explore increasing the fidelity of the training model, ex-
ploring performance under uncertain state information, and developing
a baseline metric that can be used to compare different autonomous
responses to MTEs.
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